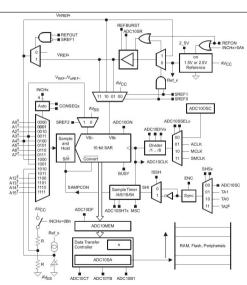
MSP430 | Periférico ADC

Luiz Fernando Pinto de Oliveira

23 de julho de 2018

/ 26

ADC - Funcionalidades


Características:

- ► Taxa de conversão máxima superior a 200 ksps;
- Conversor de 10-bit monótona sem códigos faltantes;
- Sample-and-hold com períodos de amostra programáveis;
- Inicialização da conversão por software ou Timer_A;
- ► Geração de tensão de referência no chip selecionável por software (1,5 V ou 2,5 V);
- Referência interna ou externa selecionável por software;
- ► Até oito canais de entrada externos (doze em dispositivos MSP430F22xx);
- lacktriangle Canais de conversão para sensor de temperatura interna, V_{CC} e referências externas;
- Fonte de relógio de conversão selecionável;
- ▶ Modos de conversão de simples, contínua, sequencial e sequencial contínua;
- O núcleo do ADC e a tensão de referência podem ser desligados separadamente;
- Controlador de transferência de dados para armazenamento automático de resultados de conversão.

ADC - Diagrama de blocos do ADC

2 / 26

ADC - Operação

- O núcleo ADC converte uma entrada analógica em sua representação digital de 10 bits e armazena o resultado no registro ADC10MEM. O núcleo usa dois níveis de tensão programáveis / selecionáveis $(V_{R+} \ e \ V_{R-})$ para definir os limites superior e inferior da conversão.
- A saída digital (N_{ADC}) atinge sua escala completa (03FFh) quando o sinal de entrada é igual ou maior que V_{R+} e zero quando o sinal de entrada é igual ou menor que V_{R-} .
- O canal de entrada e os níveis de tensão de referência $(V_{R+} e V_{R-})$ são definidos na memória de controle de conversão.
- Os resultados da conversão podem estar em formato binário direto ou em formato de complemento
 A fórmula de conversão para o resultado do ADC ao usar o formato binário direto é:

$$N_{ADC} = 1023 * \frac{V_{IN} - V_{R-}}{V_{R+} - V_{R-}}$$

O núcleo do ADC10 é configurado por dois registros de controle, ADC10CTL0 e ADC10CTL1. O núcleo é ativado com o bit ADC10ON. Com poucas exceções, os bits de controle ADC10 só podem ser modificados quando ENC = 0. O ENC deve ser definido como 1 antes que qualquer conversão possa ocorrer.

ADC - Seleção do clock de conversão

- O ADC10CLK é usado como o relógio de conversão e para gerar o período de amostragem. O clock de origem ADC10 é selecionado usando os bits ADC10SSELx e pode ser dividido de 1 a 8 usando os bits ADC10DIVx. Possíveis fontes ADC10CLK são SMCLK, MCLK, ACLK e oscilador interno ADC10OSC.
- O ADC10OSC, gerado internamente, está na faixa de 5 MHz, mas varia com dispositivos individuais, tensão de alimentação e temperatura. Consulte a folha de dados específica do dispositivo para a especificação ADC10OSC.

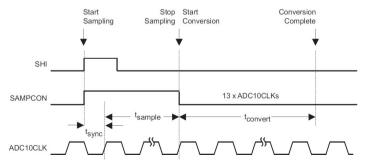
ADC - Seleção do PORT analógico

- As entradas externas ADC10 Ax, V_{eREF+} e V_{REF-} compartilham terminais com portas de E / S para fins gerais, que são portas digitais CMOS (consulte a folha de dados específica do dispositivo).
- Quando sinais analógicos são aplicados a portas digitais CMOS, a corrente parasita pode fluir de VCC para GND. Essa corrente parasita ocorre se a tensão de entrada estiver próxima do nível de transição do gate. Desativar o buffer do pino de porta elimina o fluxo de corrente parasita e, portanto, reduz o consumo geral de corrente. Os bits ADC10AEx fornecem a capacidade de desativar os buffers de entrada e saída dos pinos da porta.

ADC - Gerador de tensão de referência

- O módulo ADC10 contém uma referência de tensão interna com dois níveis de tensão selecionáveis. Definir REFON = 1 ativa a referência interna. Quando REF2_5V = 1, a referência interna é de 2,5 V. Quando REF2_5V = 0, a referência é de 1,5 V.
- A tensão de referência interna pode ser usada internamente (REFOUT = 0) e, quando REFOUT = 1, externamente no pino V_{REF+} . REFOUT = 1 só deve ser usado se os pinos V_{REF+} e V_{REF-} estiverem disponíveis como pinos de dispositivo.
- Referências externas podem ser fornecidas para os pinos A4 e A3, V_{R+} e V_{R-} , respectivamente. Quando referências externas são usadas, ou quando VCC é usado como referência, a referência interna pode ser desligada para economizar energia.
- Uma referência positiva externa VeREF + pode ser buffered configurando SREF0 = 1 e SREF1 = 1 (somente dispositivos com VeREF + pino). Isso permite usar uma referência externa com uma grande resistência interna ao custo da corrente do buffer. Quando REFBURST = 1, o consumo atual aumentado é limitado ao período de amostragem e conversão.

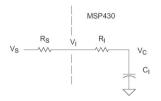
ADC - Tempo de amostragem e conversão



- Uma conversão analógico-digital é iniciada com uma borda de subida do sinal de entrada de amostra SHI. A fonte para SHI é selecionada com os bits SHSx e inclui o seguinte:
 - O ADC10SC bit;
 - O Timer_A Output Unit 1;
 - O Timer_A Output Unit 0;
 - O Timer_A Output Unit 2.
- A polaridade da fonte do sinal SHI pode ser invertida com o bit ISSH. Os bits SHTx selecionam o período de amostragem para ser 4, 8, 16 ou 64 ciclos ADC10CLK.

ADC - Tempo de amostragem e conversão

• O tempo de amostragem define o valor SAMPCON alto para o período de amostra selecionado após a sincronização com ADC10CLK. O tempo total de amostragem é t_{sample} mais t_{sync} . A transição de alto para baixo do SAMPCON inicia a conversão de analógico para digital, que requer 13 ciclos de ADC10CLK, conforme mostrado abaixo:



ADC - Considerações sobre o tempo de amostragem

9 / 26

- Quando SAMPCON = 0, todas as entradas Ax são de alta impedância. Quando SAMPCON = 1, a entrada Ax selecionada pode ser modelada como um filtro passa-baixo RC durante o período amostral, como mostrado na figura abaixo.
- Uma resistência de entrada interna MUX-on RI (2 k Ω no máximo) em série com o capacitor CI (27 pF no máximo) é vista pela fonte. A tensão do C_I do capacitor V_C deve ser carregada dentro de $^1/_2$ LSB da tensão da fonte VS para uma conversão precisa de 10 bits.

V_I = Input voltage at pin Ax

V_S = External source voltage

R_S = External source resistance
R_L = Internal MUX-on input resistance

C_I = Input capacitance

V_C = Capacitance-charging voltage

ADC - Considerações sobre o tempo de amostragem

■ A resistência da fonte R_S e R_I afeta o t_{sample} . As equações a seguir podem ser usadas para calcular o tempo mínimo de amostragem para uma conversão de 10 bits.

$$t_{sample} > (R_S + R_I) * ln(2^{11}) * C_I$$

■ Substituindo os valores para R_I e C_I fornecidos acima, a equação se torna:

$$t_{sample} > (R_S + 2k\Omega) * 7,625 * 27pF$$

■ Por exemplo, se R_S for 10 k Ω , o período de amostragem deve ser maior que 2,47 μ s.

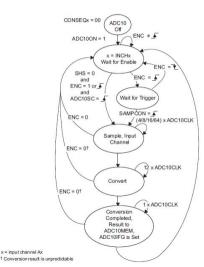
ADC - Considerações sobre o tempo de amostragem

11 / 26

• Quando o buffer de referência é usado no modo burst, o tempo de amostragem deve ser maior que o tempo de amostragem calculado e o tempo de estabilização do buffer, tREFBURST:

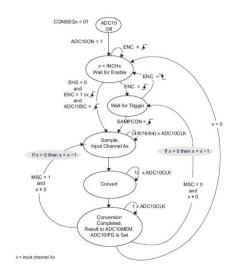
$$t_{sample} > \begin{cases} (R_S + R_I) * ln(2^{11}) * C_I \\ t_{REFBURST} \end{cases}$$

- Por exemplo, se V_{Ref} for 1,5 V e R_S for 10 k Ω , o período de amostragem deve ser maior que 2,47 μ s quando ADC10SR = 0, ou 2,5 μ s quando ADC10SR = 1. Consulte a folha de dados específica do dispositivo para os parâmetros.
- Para calcular o tempo de acomodação do buffer ao usar uma referência externa, a fórmula é:

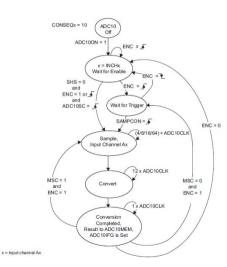

$$t_{REFBURST} = S_R * V_{Ref} - 0.5\mu s$$

- Onde:
 - ► $S_R = Slew \ rate \ buffer \ (1 \ \mu s/V \ quando \ ADC10SR = 0 \ e \ 2 \ \mu s/V \ quando \ ADC10SR = 1);$
 - V_{Ref} = Tensão de referência externa.

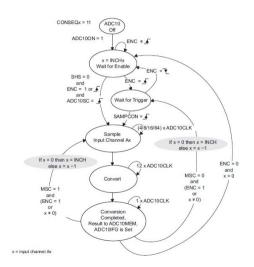
ADC - Modo de conversão simples de canal único


- Um único canal selecionado pelo INCHx é amostrado e convertido uma vez. O resultado do ADC é gravado em ADC10MEM.
- Quando o ADC10SC aciona uma conversão, as conversões sucessivas podem ser acionadas pelo bit ADC10SC. Quando qualquer outra fonte de trigger é usada, o ENC deve ser alternado entre cada conversão.

ADC - Modo sequencial de canais


- Uma sequência de canais é amostrada e convertida uma vez. A sequência começa com o canal selecionado por INCHx e decrementa para o canal A0. Cada resultado do ADC é gravado em ADC10MEM. A sequência pára após a conversão do canal A0.
- Quando o ADC10SC aciona uma sequência, sequências sucessivas podem ser acionadas pelo bit ADC10SC. Quando qualquer outra fonte de trigger é usada, o ENC deve ser alternado entre cada sequência.

ADC - Modo de conversão contínua de canal único


Um único canal selecionado pelo INCHx é amostrado e convertido continuamente. Cada resultado do ADC é gravado em ADC10MEM.

ADC - Modo de conversão contínua sequencial de canais

- Uma sequência de canais é amostrada e convertida repetidamente. A sequência começa com o canal selecionado por INCHx e decrementa para o canal A0.
- Cada resultado do ADC é gravado em ADC10MEM. A sequência termina após a conversão do canal A0 e o próximo sinal de disparo reinicia a sequência.

ADC10CTL0								
15 14 13 12 11 10 9 8							8	
SREFx		ADC10SHTx		ADC10SR	REFOUT	REFBURST		
7	6	5	4	3	2	1	0	
MSC	REF2_5V	REFON	ADC100N	ADC10IE	ADC10IFG	ENC	ADC10SC	

- **SREFx**: Seleção da referência.
 - ▶ 000 $V_{R+} = VCC e V_{R-} = VSS$;
 - ▶ 001 $V_{R+} = V_{REF+}$ e $V_{R-} = VSS$;
 - ▶ 010 $V_{R+} = V_{eREF+}$ e $V_{R-} = VSS$. Somente dispositivos com V_{eREF+} ;
 - ▶ 011 $V_{R+} = Buffered\ V_{eREF+}$ e $V_{R-} = VSS$. Somente dispositivos com V_{eREF+} ;
 - ▶ 100 $V_{R+} = \text{VCC}$ e $V_{R-} = V_{REF-}/V_{eREF-}$. Somente dispositivos com V_{eREF-} ;
 - ▶ 101 $V_{R+} = V_{REF+}$ e $V_{R-} = V_{REF-} / V_{eREF-}$. Somente dispositivos com V_{eREF-} ;
 - ▶ 110 $V_{R+} = V_{eREF+}$ e $V_{R-} = V_{REF-} / V_{eREF-}$. Somente dispositivos com $V_{eREF+/-}$;
 - ▶ 111 $V_{R+} = Buffered\ V_{eREF+}$ e $V_{R-} = V_{REF-}/V_{eREF-}$. Somente dispositivos com $V_{eREF+/-}$.

ADC10CTL0									
15 14 13 12 11 10 9 8							8		
SREFx		ADC10SHTx		ADC10SR	REFOUT	REFBURST			
7 6 5		4	3	2	1	0			
MSC	REF2_5V	REFON	ADC100N	ADC10IE	ADC10IFG	ENC	ADC10SC		

- ADC10SHTx: Período de sample-and-hold do ADC10:
 - 00.4 × ADC10CLKs:
 - 01.8 × ADC10CLK:
 - ▶ 10 16 × ADC10CLKs:
 - ► 11 64 × ADC10CLKs.
- ADC10SR: Taxa de amostragem do ADC10. Esse bit seleciona o recurso da unidade de buffer de referência para a taxa máxima de amostragem. A
 - configuração de ADC10SR reduz o consumo atual do buffer de referência.
 - 0 buffer de referência suporta até 200 ksps;
 - ▶ 1 buffer de referência suporta até 50 ksps.
 - REFOUT: Referência de saída.
 - 0 desligado;
 - 1 ligado.
- REFBURST: Referência burst.
 - O buffer de referência contínua:
 - 1 buffer de referência somente durante a conversão de amostra e conversão.
- MSC: Amostra múltipla e conversão. Válido apenas para modos de sequência ou repetidos.
 - ▶ 0 A amostragem requer uma borda de subida do sinal SHI para acionar cada conversão e amostra.
 - 1 A primeira borda de subida do sinal SHI aciona o temporizador de amostragem, mas outras amostragens e conversões são realizadas automaticamente assim que a conversão anterior é concluída.

ADC10CTL0									
15	15 14 13 12 11 10 9 8								
SREFx		ADC10SHTx		ADC10SR	REFOUT	REFBURST			
7 6 5		4	3	2	1	0			
MSC	REF2_5V	REFON	ADC100N	ADC10IE	ADC10IFG	ENC	ADC10SC		

- REF2_5V: Tensão do gerador de referência. REFON também deve ser definido.
 - ▶ 0 1.5 V;
 - ▶ 1 2,5 V.
- REFON: Gerador de referência ativado.
 - 0 referência desativada;
 - 1 referência ativada.
- ADC10ON: Ativa o ADC10.
 - 0 ADC10 desativado:
 - 1 ADC10 ativado.
- ADC10IE: Ativa a interrupção do ADC10.
 - 0 interrupção desativada:
 - 1 interrupção ativada.

ADC10CTL0									
15 14 13 12 11 10 9 8							8		
SREFx		ADC10SHTx		ADC10SR	REFOUT	REFBURST			
7	6	5	4	3	2	1	0		
MSC	REF2_5V	REFON	ADC10ON	ADC10IE	ADC10IFG	ENC	ADC10SC		

- ADC10IFG: Flag da interrupção do ADC10. Este bit é definido se o ADC10MEM for carregado com um resultado de conversão. Ele é redefinido automaticamente quando a solicitação de interrupção é aceita ou pode ser redefinida pelo software.
 - 0 Nenhuma interrupção pendente;
 - 1 Interrupção pendente.
- ENC: Ativa a conversão
 - 0 ADC10 desativado:
 - ► 1 ADC10 ativado
- ADC10SC: Inicializa a conversão. Início de amostra e conversão controlado por software. ADC10SC e ENC podem ser definidos em conjunto com uma instrução. O ADC10SC é redefinido automaticamente.
 - 0 sem início de amostragem e conversão:
 - 1 inicializa a amostragem e conversão.

ADC10CTL1								
15	15 14 13 12 11 10 9 8							
INCHx				SH	ISx	ADC10DF	ISSH	
7 6 5 4			4	3	2	1	0	
ADC10DIVx			ADC10	SSELx CONSEQx		SEQx	ADC10BUSY	

- INCHx: Selecão de canal de entrada. Esses bits selecionam o canal para uma conversão única ou o canal mais alto para uma sequência de conversões.
 - 0000 A0:
 - 0001 A1:
 - 0010 A2:

 - 0011 A3:
 - 0100 A4:
 - 0101 A5:

 - 0110 A6:
 - 0111 A7:

 - 1000 V_{eREF+} ;
 - 1001 V_{REF-} / V_{eREF-} ;

 - 1010 sensor de temperatura:
 - 1011 (VCC VSS) / 2;
 - 1100 (VCC VSS) / 2. A12 em dispositivos MSP430F22xx;
 - 1101 (VCC VSS) / 2. A13 nos dispositivos MSP430F22xx;
 - 1110 (VCC VSS) / 2. A14 nos dispositivos MSP430F22xx;
 - 1111 (VCC VSS) / 2. A15 nos dispositivos MSP430F22xx.

ADC10CTL1								
15	15 14 13 12 11 10 9 8							
INCHx			SHSx		ADC10DF	ISSH		
7 6 5 4			3	2	1	0		
ADC10DIVx			ADC10	OSSEL× CONSEQ×		ADC10BUSY		

- SHSx: Seleciona a fonte de sample-and-hold:
 - 00 bit ADC10SC:
 - 01 Timer A.OUT1:
 - ▶ 10 Timer A.OUT0;
 - ▶ 11 Timer A.OUT2 (Timer A.OUT1 nos dispositivos MSP430F20x0, MSP430G2x31 e MSP430G2x30).
- ADC10DF: Formato dos dados.
 - 0 binário;
 - 1 complemento 2s.
- ISSH: Inversão do sinal sample-and-hold.
 - 0 o sinal da amostra da entrada não é invertido:
 - 1 o sinal da amostra da entrada é invertido.
- ADC10DIVx: Divisor do clock ADC10.
 - ▶ 000 /1:
 - ▶ 001 /2;
 - ► 010 /3:
 - 010 /3;
 - 011 /4;
 - **1**00 /5;
 - 101 /6;
 - **110** /7;
 - 110 /7;

ADC10CTL1								
15	15 14 13 12 11 10 9 8							
	INCHx			SHSx		ADC10DF	ISSH	
7	6	5	4	3	2	1	0	
ADC10DIVx		ADC10	0SSEL× CON		SEQx	ADC10BUSY		

- ADC10SSELx: Seleciona a fonte de clock do ADC10.
 - 00 ADC10OSC:
 - 01 ACLK:
 - 10 MCLK:
 - 11 SMCLK
- CONSEQx: Seleciona o modo de conversão seguencial.
 - 00 conversão simples de canal único:
 - 01 conversão sequencial de canais;
 - 10 conversão contínua de canal único:

 - 11 conversão contínua sequencial de canais.
- ADC10BUSY: ADC10 ocupado. Este bit indica uma amostra ativa ou operação de conversão
 - 0 nenhuma operação está ativa:
 - 1 uma sequência, amostra ou conversão está ativa.

ADC - Exemplo do ADC em modo de conv. simples


```
#include <msp430.h>
// Segundo a Texas, essas linhas sao para ajustar uma pequena inconssistencia
// que pode ocorrer entre os microcontroladores g2553 e g2231
#ifndef TIMERO A1 VECTOR
#define TIMERO A1 VECTOR TIMERA1 VECTOR
#define TIMERO AO VECTOR TIMERAO VECTOR
#endif
volatile long temperatura;
int main(void)
        WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer
        P1DIR = 0 \times 41:
        P1OUT = 0:
        if ((CALBC1 1MHZ = 0xFF) || (CALDCO 1MHZ = 0xFF)){}
            P1OUT = 0 \times 01:
            while (1):
        BCSCTL1 = CALBC1 \ 1MHZ:
        DCOCTL = CALDCO_1MHZ;
        BCSCTL3 |= LFXT1S 2:
        IFG1 &= ~OFIFG:
        BCSCTL2 |= SELM 0 + DIVM 3 + DIVS 3:
```


Referências

- MSP403×2×× Family, User's Guide, revised July 1013;
- Getting Started with the MSP430 LaunchPad, Student Guide and Lab Manual, revision 2.01 February 2012.

Seja 100 % Motivado!